[1]魏立国,毛 伟,王 东,等.金属Ni修饰褐煤半焦的制备及其在DSSCs中的应用[J].黑龙江科技大学学报,2021,31(05):653-659.[doi:10.3969/j.issn.2095-7262.2021.05.018 ]
 Wei Liguo,Mao Wei,Wang Dong,et al.Preparation of metal Ni modified lignite semi-coke and its application in DSSCs[J].Journal of Heilonhjiang Institute of Science and Technology,2021,31(05):653-659.[doi:10.3969/j.issn.2095-7262.2021.05.018 ]
点击复制

金属Ni修饰褐煤半焦的制备及其在DSSCs中的应用()
分享到:

《黑龙江科技大学学报》[ISSN:2095-7266/CN:2301588/TD]

卷:
31
期数:
2021年05
页码:
653-659
栏目:
出版日期:
2021-09-30

文章信息/Info

Title:
Preparation of metal Ni modified lignite semi-coke and its application in DSSCs
文章编号:
2095-7262(2021)05-0653-07 文献标志码:A
作者:
魏立国 毛 伟 王 东 余福蓉 何晖毅 邹明月
(黑龙江科技大学 环境与化工学院, 哈尔滨 150022)
Author(s):
Wei Liguo Mao Wei Wang Dong Yu Furong He Huiyi Zou Mingyue
(School of Environmental & Chemical Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China)
关键词:
褐煤 半焦 对电极 染料敏化太阳能电池 光电性能
Keywords:
lignite semi-coke counter electrode DSSCs photoelectric property
分类号:
TQ536
DOI:
10.3969/j.issn.2095-7262.2021.05.018
文献标志码:
A
摘要:
为制备工艺简单、价格低廉的对电极材料,拓展低阶煤应用领域,以金属Ni修饰的褐煤半焦为研究对象,对其进行了SEM、XRD、XPS、Raman光谱等表征,利用循环伏安、电化学交流阻抗、塔菲尔极化曲线等测试方法,研究了酸处理、金属Ni修饰及半焦形成对对电极性能的影响。结果表明:金属Ni修饰的褐煤半焦能够提高材料的电催化活性及导电性,有助于催化电解液还原,进而提高电池的光电转换效率; 金属Ni修饰的褐煤半焦对电极的光电转化效率为2.074%,明显高于褐煤对电极的效率。金属Ni修饰褐煤半焦可提高煤基对电极材料的光伏性能。
Abstract:
This paper aims to prepare coal-based electrode materials with simple technology and low price, and promote their practical application in dye-sensitized solar cell.The study involves taking as research object the metal Ni-modified lignite semi coke which is characterized by SEM,XRD,XPS and Raman Spectra; and investigating the influence of acid treatment,Ni modification, and semicoke formation on the electrocatalytic performance using CV,EIS and Tafel curves.The results show that Ni modified lignite semi-coke enables an improvement in the electrocatalytic activity and conductivity of the material, contributing to the reduction of the catalytic electrolyte and thus improving the photoelectric conversion efficiency of the solar cells; the photoelectric conversion efficiency of Ni modified lignite semi-coke counter electrode is 2.074%,which is much higher than that of lignite counter electrode.Nickel modified lignite semi-coke could enable the improved performance of coal-based electrodes in dye sensitized solar cells.

参考文献/References:

[1] Hilary S V, Geneviève S. Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells:a mini review[J]. Synthetic Metals, 2017, 223: 107-121.
[2] Brian O R, Michael G. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-740.
[3] Janne H, Paula V, Kati M, et al. Device physics of dye solar cells[J]. Advanced Materials, 2010, 22(35): 210-234.
[4] Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts[J]. Nature Materials, 2008, 7(8): 626-630.
[5] Muhammad Z I, Sana K. Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes[J]. Solar Energy, 2018, 160: 130-152.
[6] Hu Y L, Aswani Y, Stefan G, et al. High-surface-area porous platinum electrodes for enhanced charge transfer[J]. Advanced Energy Materials, 2014, 4(14): 1400510.
[7] Xiao Y M, Han G Y, Li Y P, et al. Three-dimensional hollow platinum-nickel bimetallic nanoframes for use in dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 278: 149-155.
[8] Wu M X, Lin X, Anders H, et al. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells[J]. Angewandte Chemie(International ed. in English), 2011, 50(15): 3520-3524.
[9] Hou Y, Wang D, Yang X H, et al. Rational screening low-cost counter electrodes for dye-sensitized solar cells[J]. Nature Communications, 2013, 4(1):737-740.
[10] Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2012, 134(7): 3419-3428.
[11] Lee C G, Wei X D, Jeffrey W K, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[12] Yang W, Ma X L, Xu X W, et al. Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 282: 228-234.
[13] Zhu L L, Gao M M, Peh Connor Kang Nuo, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Energy Weekly News, 2018, 8(16): 1702149.
[14] Serene W L Ng, Gamze Y, Wei L O, et al. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage[J]. Applied Catalysis B: Environmental, 2018, 220: 533-541.
[15] Wei L O, Judith H M W, Serene W L Ng, et al. Simultaneous activation-exfoliation-reassembly to form layered carbon with hierarchical pores[J]. Chem Cat Chem, 2017, 9(13): 2488-2495.
[16] Kouhnavard M, Ludin N A, Ghaffari B V, et al. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects[J]. Chem Sus Chem, 2015, 8(9): 1510-1533.
[17] Li Y J, Wang G L, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2016, 19: 165-175.
[18] Jing H Y, Shi Y T, Qiu W W, et al. Onion-like graphitic carbon covering metallic nanocrystals derived from brown coal as a stable and efficient counter electrode for dye-sensitized solar cells[J]. Journal of Power Sources, 2019, 414: 495-501.
[19] Supriya A P, Dipak V S, Lseul L, et al. An ion exchange mediated shape-preserving strategy for constructing 1-D arrays of porous CoS1.0365 nanorods for electrocatalytic reduction of triiodide[J]. Journal of Materials Chemistry A, 2015, 3(15): 7900-7909.
[20] Wu Z Z, Wang D Z, Wang Y, et al. Preparation and tribological properties of MoS2 Nanosheets[J]. Advanced Engineering Materials, 2010, 12(6): 534-538.
[21] Jiang X C, Li H M, Li S W, et al. Metal-organic framework-derived Ni-Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells[J]. Chemical Engineering Journal, 2017, 334: 419-431.
[22] Meng X T, Yu C, Lu B, et al. Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells[J]. Nano Energy, 2016, 22: 59-61.

备注/Memo

备注/Memo:
收稿日期: 2021-03-30
基金项目: 国家自然科学基金面上项目(51974113); 黑龙江省博士后科研启动基金项目(LBH-Q19177)
第一作者简介: 魏立国(1980-),男,吉林省汪清人,讲师,博士,研究方向:能源化学及煤的综合利用,E-mail:xiaole6407@sina.com。
编辑 晁晓筠 校对 张永彬
更新日期/Last Update: 2021-09-25